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Abstract The quality of a rescue service system is typically evaluated ex post by
the proportion of emergencies reached within a predefined response time threshold.
Optimizationmodels in literature consider different variants of demand area coverage
or busy fractions and reliability levels as a proxy for Emergency Medical Service
quality. But no comparisons of the mentioned models with respect to their real-world
performance are found in literature. In this paper, the influence of these different
model formulations on real-world outcome measures is analyzed by means of a
detailed discrete event simulation study.

1 Introduction

Rescue and Emergency Medical Services (EMS) are an important part of public
health care. The quality of a rescue service system is typically evaluated ex post by
the proportion of emergencies reached within a predefined response time threshold.
Coverage is one of the most accepted a priori quality criteria in EMS literature [1].
Since 1971 [9], different covering models and various extensions of these models
are used to support ambulance location planning. The main challenge in ambulance
location planning is to provide an adequate service level with respect to accessi-
bility of an emergency within a predefined response time threshold and availability
of ambulances [4]. Optimization models in literature consider different variants of
demand area coverage, such as single coverage [2], double coverage [6] and empiri-
cally required coverage [5]. Other models use busy fractions [3] and reliability levels
[7] as a proxy criterion for EMS quality. All those models support the decision maker
on the strategic and tactical level of ambulance location planning, but differ regarding
the specification of the objective functions as well as concerning input parameters
and model assumptions. To the best of our knowledge, no systematic comparisons
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of different ambulance location models exist in literature. The aim of this paper is
to provide a comparison of the mentioned models concerning their suitability for
decision support in strategic and tactical ambulance location planning. A discrete
event simulation is used to systematically evaluate the resulting solutions of each
covering concept. It is analyzed, which of those covering concepts provides the best
proxy criterion for the real world performance measure. The remainder of the paper
is structured as follows: First a brief overview of the selected ambulance location
models is given. Technical details of the discrete event simulation are described and
results of a real world case study are presented afterwards.

2 Ambulance Location Models

In this paper, daytime-dependent extensions of fivewell knownmodels for ambulance
location are considered: The (1) Maximal Covering Location Problem (MCLP) [2],
the (2) Double Standard Model (DSM) [6], the (3) Maximum Expected Covering
Location Problem (MEXCLP) [3], the (4) Maximum Availability Location Problem
(MALP I/II) [7], and the (5) Empirically Required Coverage Problem (ERCP) [5].
To compare these models, a consistent constraint set is used and model assumptions
are briefly summarized. For additional descriptions of these models see e.g. [1]. The
aim of these models is to maximize the total demand served within a legal response
time threshold of r minutes, given a limited number of pt ambulances in period t .
i indicates the planning squares or demand nodes (i ∈ I ), while dit denotes the
demand of node i in period t ∈ T . To be able to serve an emergency at demand node
i , at least one ambulance has to be available within the response time threshold r ,
e.g. positioned at node j ∈ Ni t := { j ∈ J | disti j t ≤ r}, where disti j t describes the
response time between node i and node j in period t . The integer decision variable
y jt ∈ N0 indicates the number of ambulances positioned at node j in period t , and
the binary decision variable xk

it is equal to 1 if demand node i is covered k times in
period t . With the preceding notation, generic covering constraints are given by

∑

j∈Ni t

y j t ≥
pt∑

k=1

xk
it ∀i ∈ I ,∀t ∈ T . (1)

Setting the right hand side of constraints (1) equal to 1 ensures that each demand node
i can be reached within the response time threshold at least once if an ambulance
is available. This single coverage may become inadequate when several emergen-
cies occur at the same time and the assigned ambulances become busy. To hedge
against parallel operations resulting in unavailability of ambulances, the mentioned
models use different concepts and objective functions. All models ensure a suffi-
cient number of ambulances located in Ni t to serve each demand node i . Table1
compares the covering constraints, the objective functions, and the assumptions
of a priori information of the models. In addition to covering constraints, further
constraints are used to ensure correct relocations and to restrict the number of
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Table 1 Comparison of model constraints, objectives, and assumptions about required information

Model Covering constraint Objective Required
information

MCLP
∑

j∈Ni t
y j t ≥ x1i t max

∑
i∈I

∑
t∈T dit x1i t dit

DSM
∑

j∈Ni t
y j t ≥

x1i t + x2i t

max
∑

i∈I
∑

t∈T dit x2i t dit

MEXCLP
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T
∑pt

k=1 dit (1 − qt )q
k−1
t xk

i t dit , qt

MALP I
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T dit x Kt
i t dit , α, qt , Kt

ERCP
∑

j∈Ni t
y j t ≥∑pt

k=1 xk
it

max
∑

i∈I
∑

t∈T dit x
K�i t

i t dit , K�i t

Kt := �ln(1 − α)/ ln(qt )�, K�i t empirically required degree of coverage (see explanation below)

ambulances in use (see e.g. [5]). In theMCLP and the DSM a uniform single, respec-
tively double coverage is maximized. Few information is needed, but the unavailabil-
ity of ambulances due to parallel operations is ignored in the MCLP or simplified in
theDSMby using a time and spatial fixed backup (double) coverage. In theMEXCLP
it is assumed that each ambulance has the probability q, called busy fraction, of being
unavailable and the expected covered demand is maximized. In the earliest version
of the MEXCLP [3], it is assumed that each ambulance has the same probability
of being busy. In order to compare the models on the basis of the same criterion, a
time-dependent busy fraction qt is used in the following analysis. In MALP I and
MALP II [7], a chance constrained program is used to maximize the demand covered
at least with a given probability α. The minimum number of ambulances required to
serve demand node i with a reliability level of α in period t is determined by

1 − q
∑

j∈Ni t
y j t

t ≥ α, (2)

which can be linearized as
∑

j∈Ni t
y j t ≥ �ln(1 − α)/ ln(qt )� =: Kt (with system

unique busy fraction qt in MALP I). In MALP II, the assumption of identical busy
fractions is relaxed and the busy fractions qit are calculated for each demand node i
and period t . The problem of using demand node specific busy fractions qit is that
these values depend on the output of the model and are unknown a priori [1]. To
overcome this difficulty, a more direct and data-driven way to determine the required
coverage is used in the ERCP [5]. The empirical distribution function representing
the number of parallel EMS operations per time unit and district is calculated. The
95% quantile of the stochastic demand per district l and time period t is determined
empirically in order to derive the required degree of coverage K�i t and thus the
necessary number of ambulances. This assures that there is a sufficient number of
ambulances to cover all parallel operations in at least 95% of all cases. To compare
the mentioned models, all relevant model parameters, like busy fractions, reliability
levels and the empirically required coverage levels are calculated using an identical
data base which relies on the same spatial and time-dependent partitioning.
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3 Discrete Event Simulation of EMS Systems

All previously described models consider different variants of demand coverage as
a proxy criterion for EMS quality, defined as the proportion of calls served within
the legal response time threshold. This real world outcome measure is mainly influ-
enced by the positioning of ambulances implied by different objective functions and
covering constraints. The solution quality, e.g. the quality of an EMS system can
only be evaluated ex post. Discrete event simulation represents a common approach
to analyze complex and dynamically changing environments like EMS systems. In
this paper, a simulation approach is applied to compare the performance of the afore-
mentioned models regarding the real world outcome measure. In the following, the
main components of the simulation are described. The data generation process for
the discrete event simulation consists of two main modules:

1. Generation of random events: A whole weekday is subdivided into 24 time inter-
vals t ∈ {0, . . . , 23} with a length of Δ = 1 h. For a given demand node i and a
time interval [t, t + Δ), in the following indicated by t , the number of emergen-
cies occurring within t can be approximated by a Poisson distribution Pλ with
parameter λ. The average number of emergency calls per time interval t at a given
weekday D is PλD

it
with λD

it := (αD/365) · ∑365
�=1 d�

i t . The parameter λD
it is used

as an estimator for the parameter of the Poisson distribution, where d�
i t denotes

the historical number of emergencies occurring in period t in demand node i at
day �. The scaling factor αD is determined empirically and serves as a correc-
tion term for introducing day-related seasonality. This is necessary since the total
demand fluctuates within different weekdays. For each t and i , the quantity of
emergencies dit is sampled from previously specified Poisson distributions. Then,
the emergencies are distributed according to the realization of a uniform random
variable within the time interval t .

2. Travel time generation: The travel time is not constant for different time intervals
t of the day, cf. [8]. Typically, higher traveling speeds are achieved in the evening,
while lower speeds are observed around noon and during rush hours. To incorpo-
rate realistic driving speeds, a time-dependent random variable vt ∼ N (μt , σt )

is used, where μt and σt are determined empirically. For each generated emer-
gency, the travel time is sampled from N (μt , σt ) and stored in the corresponding
variable.

During the simulation, an emergency event is characterized by the time of occur-
rence, the associated demand node, the traveling speed of the associated ambulance
and the emergency duration. The duration of each operation is sampled from the
empirical distribution function. The simulation process works as follows: An ambu-
lance is characterized by the assigned EMS station and an availability indicator.
An ambulance is available, if it is currently not serving an emergency. For each
emergency occurring, the selection of ambulances is performed by a predefined
nearest-distance strategy: For a given emergency position i , all ambulance locations
are sorted by increasing distances to i . Note, that the traveling distance depends on
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the location of ambulances which are an outcome of the tested optimization model.
If there is an ambulance available at the nearest station, this vehicle is selected.
Otherwise, the next station in the list is checked. The process repeats until an available
ambulance has been found or all stations are checked. If no ambulance is available,
a queue of unfulfilled requests is being built. Whenever an ambulance is assigned to
serve an emergency, the travel time is generated and the vehicle is blocked for the
duration time of the operation. The simulation process terminates after serving all
emergencies. Finally, dividing the overall number of emergencies served on time by
all emergencies occurring gives the desired real world quality measure.

4 Case Study and Results

Arealworld case study for evaluatingmodel performances is conductedby specifying
all required model parameters (demand, busy fractions and empirically required
coverage) on the basis of a data set from a German city containing more than 20,000
operations per year. In all models the number of ambulances in time period t is given
by the parameters pt and all demand points are considered as potential ambulance
locations. The average emergency demand over 1 year is visualized in the first picture
of Fig. 1. The first objective is to maximize the model specific objective function.
The second objective is to cover a maximal number of demand areas at least once.
The third objective aims at minimizing the number of vehicle locations. To hedge
against dual degeneracy in location models, a lexicographic approach is applied. The
coverage induced by the solutions of the models are visualized in Fig. 1. Demand
nodes are colored from light to dark gray and visualize the number of zero (light gray)

Demand MCLP DSM

MEXCLP MALP I ERCP

Fig. 1 Emergency demand and degree of coverage induced by the solutions of different models
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Fig. 2 Proportion of calls served within the time threshold of 8min during 1 year (20 simulation
runs)

to sixfold (dark gray) coverage. Results, i.e., the proportion of calls served within the
legal response time threshold of 8min for 20 simulation runs for each model solution
are shown in Fig. 2. Data driven covering models like MEXCLP, MALP and ERCP
outperform fixed covering models (MCLP, DSM) with respect to the real world EMS
performance measure. Fixed covering models provide inadequate coverage of areas
with high, resp. low, number of parallel operations due to disregarding the availability
of ambulances. Instead, data driven approaches locate ambulances as needed by
considering demand volume as well as criteria for ambulance unavailability.

5 Conclusion and Outlook

In this paper a discrete event simulation study is conducted to evaluate different
ambulance location models. Based on the simulation study exemplary results of
different coverage concepts concerning their influence on real world performance
measures are shown. All analyzed concepts differ concerning the input parameters
and model assumptions. Exemplary results suggest that models requiring detailed
information (for example the MEXCLP and the ERCP) perform better than models
ignoring these information. In the next step, studies are extended systematically to
different typical city and demand structures.
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